欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEAP1流量计总代理

发布时间: 热度:
德国VSEAP1流量计总代理同时我们还经营:电磁流量计应用中主要存在以下几点不足:(1)电磁流量计井下精确定位问题。由于仪器本身没有深度定位装置,仅器下入深度的计量是靠绞车上的深...

德国VSEAP1流量计总代理同时我们还经营:电磁流量计应用中主要存在以下几点不足:(1)电磁流量计井下精确定位问题。由于仪器本身没有深度定位装置,仅器下入深度的计量是靠绞车上的深.度计数器来完成。深度计数器计量结果的精度不但与计数器本身有关,而且还与工作环境有关。如果深度误差太大,测量结果就失去意义。因此,深度校正是现场测试的一个关键问题。(2)管径变化对测量结果的影响。通常应用的电磁流量计是中心流速式的,仅器的标定是在特制的管道中完成的,如果测量环境与标定环境不同,就会出现测量误差。以内流式仪器为例,若它在内径为φ62mm光油管中标定,在内径为φ59mm的涂料油管中测量时就会引入最大15.28%的误差。这是系统误差,因此在仪器测量过程中要搞清楚被测管道的内径,解释资料时要扣除因管径变化引起的测量误差。大量实际测量数据表明,由管径变化引起的误差都在10%以内。(3)电磁流量计的标定问题。仪器是用清水标定的,若注,入介质改为污水或其它非清水介质时会对测量结果产生什么样的影响,也是应用中要考虑的一个问题。在实际应用中,常常需要在现场对仪器进行标定,且要保证标定结果的准确性。(4)不能连续测量。电磁流量计如果能连续测量管柱内的流动剖面,就能直观地反映出整个井筒内的吸水情况,这样有利于测井资料的解释。由于结构设计上的缺陷,电磁流量计目前还不能完全实现连续测量。1、插入式涡街流量计可测量蒸汽,气体,液体的体积流量和质量流量;2、无机械运动部件,测量精度高,结构紧凑维护方便;3、压力损失小,量程范围宽;范围度达1:25;4、采用消扰电路和抗振传感头;5、采用消扰电路和抗振传感头,使仪表具有一定抗环境振动性能;6、可测介质温度达+250℃。7、可实现不断流拆装传感器,可实现放大器与传感器分离(分离距离15m);8、SSP自适应频谱波技术 小漩涡采集 模块化设计 保证产品的高可靠性和一致性9、插入式涡街流量计内置完善的抗干扰 多级保护电路 有效消除振动干扰 温度压力检测及补偿单元10、兼有二线电流和三线脉冲输出功能 具备HART功能 可远程参数设置和调试电磁流量计中通常采用两类基本的励磁波形,一种是方波,另一种是正弦波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接测量管道产生巨大的涡流损耗和磁滞损耗,同时也给测量带来由电磁感应引起的同相和正交干扰。在方波励磁模式下,由于电极会出现极化现象,导致采集的感应电压信号不够准确。方波励磁模式中,在测量非导电液体时,相对较高的励磁频率,比如10Hz到200Hz,可以用来获得好的动态特性或者获得合理的信噪比,但是这种励磁方式有一个严重的问题,其变压器效应会引起流量计的零点漂移并影响测量精度。  为了避免以上极化现象和变压器效应,减少干扰,本文研究中采用了一种三值方波励磁方式,如图4-5所示,线圈的励磁信号有正、零和负三种值。  本文采用固态继电器和直流电源的方式产生三值方波励磁电压,其结构如图4-6所示。  在该电磁流量计励磁方案中,使用LabJackU12控制输出三值方波的模拟量电压信号,通过4个固态继电器组成的开关系统,直接作用到励磁线圈上。1.导电性和非导磁性  通过电磁流量计的工作原理可知电极上要产生感应电动势,首先电极必须是导体,因此电极必须具有非常好的导电性能。另外,电极处于工作磁场中,为防止磁力线在电极上集中,电极材料必须是非导磁的。2.耐腐蚀性  在电磁流量计工作的过程中,电磁传感器部分只有电极与被测介质相接触,因此电极材料的耐腐蚀性能是选择电极材料的重要因素。  电极的耐腐蚀性能对测试性能的影响主要分为两个方面。(1)电极受被测介质的腐蚀或磨损,会改变两电极间的距离L。对式的L求偏导,可以得到测量误差(2)电极在被腐蚀的过程中,电极上会出现相当大的直流漂移电压,使测量输出产生大幅度的波动,影响到测试的读数。3.电极的表面效应  电极的表面效应分为表面化学反应、电化学和极化现象,以及电极的触媒作用三个方面。(1)表面化学反应。电极表面与被测介质接触后,为了抗拒被测介质的腐蚀,往往会形成一层薄的钝化膜或氧化层。它们可能会提高电极表面的耐腐蚀性能,但也有可能增加表面接触电阻,导致仪器不能正常工作。(2)电化学和极化现象。由于目前普遍采用低频矩形波励磁,虽然能减弱极化电势的影响,但并不能完全消除极化电势干扰的影响。极化电势与液体介质性质以及电极材料性质有关。电化学现象容易在测量过程中产生浆液噪声和流动噪声,引起仪表输出出现波动现象。为了避免或减小这个现象,可选配与被测液体电化学和极化电势作用小的材料以及低噪声电极。(3)触媒作用。被测介质在电极的触媒作用下产生化学反应而影响测量。4.电极的表面光沽度  电磁流量计电极接触被测介质的表面对于粗糙度要求非常高,一般都应该抛光处理。主要原因有三个方面:表面光滑的金属在电解质中抗腐蚀性能较强;表面粗糙的金属,其产生的抗拒极化的氧化保护膜厚度不均匀,容易被颗粒状、纤维状等流体中的杂质划破,造成变动的直流电位,影响测量的稳定性;表面粗糙的电极容易在测试过程中被被测介质中的杂质污染,表面容易被杂质附着结垢,影响测试效果。  热式气体质量流量计按结构可以分为热分布型和浸入型。热分布型热式流量计将传感元件放置于管道壁,传感元件经过加热温度高于流休温度,流体流经传感元件表面导致上下游温度发生变化,利用上下游温度差测量流体流量,一般用于微小流速气体流量的测量。   热分布型热式流最计的T.作原理如图1所示,传感元件由上游热电阻、加热器利下游热电阻组成,加热器位于管道中心,使得传感元件温度高于坏境温度,上游热电阻和下游热电阻对称分布于加热器的两侧。图1中曲线1所示为管道中没有流休流过时传感元件的温度分布线.相对于加热器的上下游热电阻温度是对称的。当有流体经过热式传感元件时,温度分布为曲线2,显然流体将上游部分的热量带给下游,导致上游温度比下游温度低,上下游热电阻的温度差△T反映了流体的流量,即△T=f(m)。当流体流速过大时,上下游热屯阴的温度差△7趋向于0,因此热分布型热式气体质量流量计用于测量低流速气休微小流量。气体质量流量qm可表示为 式中:Cp-一流体介质的定压比热容;A一热传导系数;K一一仪表系数。   浸入型热式流最计的工作原理如图2所示,一般将两个热电阻置于中大管道中心,可测量中高流速流体。热电阻通较小电流或不通电流,温度为T;另一热电阻经较大电流加热,其温度T高于气体温度。管道中有气流通过时,两者之间的温度差为△T=Tv-T0气体质量流量qm与加热电路功率P、温度差△T的关系式为   式中:E一系数与流体介质物性参数有关;D一与流体流动有关的常数。   如果保持加热电路功率P恒定,这种测量方法为恒功率法;如果保持温度差△T恒定,这种测量方法为恒温差法,两种方法有各自的优缺点,使用时据具体环境和需要而定。目前较普遍的是采用恒温差法,由于需要不同的应用领域,恒温差法已不适用于某些场.合的测量,因此恒功率法应用领域越来越广泛。恒温差法的基本原理是流体流过加热的热电阻表面使得热电阻表面的温度降低,热电阻的阻值变小。反馈电路自动进行处理,通过热电阻的加热电流变大从而使得热电阻温度升高,即可使得热电阻与流体温度差恒定。通过测量传感电路的输出电流或输出电压便可获得流量值。恒功率法的基本原理是加热功率为恒定值,管道内没有流体流过时温度差△7最大,当流体流过热电阻表面时热电阻与流体温度差变小,通过测量△T便可得到流体流量。智能电磁流量计的测量不受流体的密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。电磁流量计设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便。   智能电磁流量计在试运行过程中会产生的问题,一般是由于安装的问题或选型的问题引起的,而在正常运行期间发生的问题一般是由于工作条件变化或出现新干扰源等问题引起的。所以在正常运行期间的问题一般都可以归结为仪表抗干扰能力的问题。下面小编就简单分析一下智能电磁流量计输出晃动的原因及解决办法:一、智能电磁流量计输出晃动大体上可归纳为这几点:1、流动本身是波动或脉动的,实质上不是电磁流量计的故障,仅如实反映流动状况;2、管道末充满液体或液体中含有气泡;3、外界杂散电流等电、磁干扰;4、液体物性方面(如液体电导率不均匀或含有较多变颗粒/纤维的浆液等)的原因;5、电极材料与液体匹配不妥。二、电磁流量计检查程序:    智能电磁流量计输出晃动的流程:先按流程图考急作初步调查和判断,然后再逐项细致检查和试排除故障。流程所列检查顺序的先后原则是:1、可经观察或询问了解无须作较大操作的在前,即先易后难;2、按过去现场检修经验,出现频度较高而今后可以出现概率较高者在前;3、检查本身的先后要求。若经初步调查确认足后几项故障原因,亦可提前作细致检查。   检查智能电磁流量计管内液体是否冲满,如没有充满,那么传感器处于水平安装位置或垂直安装流动的位置应特别注意,改换到能完全冲满的位置,如垂直安装流动的位置。电磁流量计是灌浆过程的主要工艺流程,为在施工中进行有效的控制,需对施工过程中的水和水泥浆液进行计量和控制。  钻孔、洗孔:灌浆施工首先要在岩层中自上而下分段进.行钻孔,待单孔终孔,用大量清水洗孔,至回水变清,无流量测量点,故不展开讨论。  简易压水试验:洗孔结束,下孔口管,密封孔口,以设计要求的压力向孔内送水,测定其相应的流量值,并据此计算岩体的透水率。计算结果关系到岩体渗透特性的评价以及灌浆成果资料整理。这一-测量点是十分重要和敏感的,准确是首要指标,水有一-定的电导率,满足电磁流量计的测量要求,需要重点考虑的是电磁流量计的口径,因为压水试验和灌浆用的是相同的电磁流量计. 灌浆:压水试验后,灌浆泵将一定水灰比(比如3:1,2:1,1:1,0.81,0.5:1)的水泥浆液压送到孔中,--部分进入裂隙而扩散,余下的浆液经回浆管返出孔外,流回到浆液搅拌机中,在规定的压力下,当注入率不大于0.4L/min时,继续灌注30min;或不大于1L/min,继续灌注60min,灌浆可以结束。每台钻孔设备都需要两台电磁流量计分别记录进、返浆流量,灌浆量就等于进浆量减去返浆量,现场管线与电磁流量计安装布置见图3。  由于现场灌浆泵泵量多为6m³/h(100L/min),故电磁流量计的量程选为100L/min,由电磁流量计的测量原理可知[4],其流速的下限由.同噪声或偏移的信噪比S/N(信号与噪声)来决定,上限则由测量管内衬里的磨损和配管的经济速度等来决定印。由于水泥浆液中带有水泥固体颗粒,考虑到对电磁流量计衬里和电极的磨损,选用流速≤5m/s,另一方面水泥浆液又具有易粘附、沉淀、结垢的特性,故电磁流量计测量管内的流速应不低于0.5m/s,以起到对电极和内衬的自清扫作用。一般当测量管内实际流速<0.1m/s时,感应电动势已变得十分微弱(零点几μV~几μV),此时噪声.的影响逐步变为主导,甚至淹没信号电动势4],由流速与相对误差的关系图(图4)可知,为了保证仪表的检测精度,流速应大于0.5m/s.故推荐使用流速范围为0.5~5m/s.  灌浆施工时吸浆量大小一般在0~100L/min,进、返浆,上电磁流量计相应的流量范围为30~100L/min,从流量、流速与口径三者关系表(表1)可知:电磁流量计口径选择DN25比较合适。DN25的测量范围是14.72~147.18L/min,同时DN25和现场灌浆管道口径一致,配套安装时,不需要变径。同时电磁流量计的时间常数也应该设置小一些,一般在1~3s,以提高测量的灵敏度。  封孔:待灌浆结束后,按照施工技术要求压浆封孔,无流量测量点,故不展开讨论。严格按标准规定使用、维护,其中孔板流量计与差压变送器及连接部分引压管线是使用、维护的重点。工作中常遇到不易发现的问题分析及解决方法如下。(1)当孔板损伤或入口锐利度改变,会使孔板上下游产生的差压减少,这时流量计计算结果比实际流量偏小,即流出系数发生变化,测量不确定度将超过标准给出的估算值。解决方法:①按标准对流出系数进行修正或更换孔板,此时新孔板的直径比应略大于旧孔板;②若暂无新孔板更换,应按国家标准对流出系数C进行孔板锐利度修正。(2)孔板变形时,应更换,新孔板的直径比应小于旧孔板。(3)使用中的节流装置应按照国家标准GB/T21446--2008要求定期清洗、检查,当发现测量直管段内表壁有明显冲刷、腐蚀、结垢时应及时更换新的测量管段,否则一般情况下会使孔板流量计计量偏低。若暂无新测量管更换,应对流出系数C按标准进行粗糙度修正。(4)为防止取压开关对差压信号的节流,应将针型阀取压开关改为与导压管相同通径的球型阀。(5)压力变送器、差压变送器准确度要求优于1级,将使用范围控制在量程的1/4~3/4,并尽量使工作点附近示值误差最小。当差压变送器工作在量程的20%以下时,应改变差压变送器量程或更换孔板。(6)仪表严格周期检定。注意仪表零位漂移,定期校准,采用零位漂移小的仪表;为防止静压误差,采用静压误差小的变送器,如EJA变送器。(7)孔板上下游应使用零泄漏轨道球阀。(8)孔板流量计操作人员要做好系统检修,注意平衡阀内漏及导压管漏气.堵塞问题。德国VSEAP1流量计总代理日常工作中如果正确保养涡街流量计,可以有效延长其使用寿命,并减少故障发生,具体方法如下:1)涡街流量计由于K系数的确定在涡街的整个环节中非常重耍,K系数的准确与否直接影响着回路的准确度,仪表更换零部件以及工艺管道的磨损等情况,均可能影响K系数.而很多化工厂又缺少标定的手段与能力,只能送出标定,受工艺运行的影响,要从管道上拆下涡街送出要5、6天的标定时间,工艺方面很难满足,从而无法确定K系数。今年,通过流量仪表间的改造,虽已经具备了较小口径的涡街标定条件,但对于较大口径的涡街仍然无能为力,以后应注意使用涡街的现场标定方法,孔板流量计使用标准频率以及便携式超声波流量计,测出管道中的瞬时流量以及传感器的脉冲输出频率,现场计算K系数。2)涡街流量计应定期清洗涡街流量计的探头,检查中曾发现,个别探头检测孔已被污物堵塞,甚至被塑料布裹住,影响了正常测量。3)涡街流量计定期检查接地和屏蔽情况,消除外界干扰。有时候指示问题是由于受到干扰所至4)涡街流量计安装环境潮湿的探头.应定期烘干一次,或作防潮处理。由于探头本身并末作防潮处理,受潮之后影响运行。5)涡街流量计的数据资料的管理应引起足够的重视,孔板流量计以利于日后的工作。涡轮流量计作为速度式仪表,以动量矩守恒为基础,涡轮流量计基本力矩平衡方程为[1]: 式中 Tb一轴与轴承的粘性摩擦阻力矩(流动产生的力矩); Td一涡轮流量计转动的驱动力矩; Th一轮毂表面的粘性阻力矩; Tm一磁电阻力矩和轴与轴承的机械摩擦阻力矩之和; T1一叶片顶端与传感器外壳的粘性摩擦阻力矩; Tw一轮毂端面粘性摩擦阻力矩; J一涡轮的转动惯量; ɷ-涡轮转动的角速度。   当流速较低时,涡轮流量计处于静止状态,此时角速度ɷ非常低,接近于0,Tb和Tw也可以忽略不计。在这种情况下,式(1)可以简化为:   由式(2)可以看出提高驱动力矩是降低涡轮流量计启动排量的一-条捷径。如图1所示,传统涡轮流量计入口端是直管段和轴向导流片,流体流经涡轮叶片之前只有轴向速度,对涡轮的驱动力矩只是对涡轮叶片作用力的径向分力产生的力矩。因为涡轮叶片螺旋角为45°,如果将导流片改为螺旋角为-45°的螺旋导流片(图2),当流体进入导流片时会产生旋转,方向与涡轮叶片正交,使得流体在轴向流动速度不变的基础上增加了径向的旋转运动,流体的旋转方向与涡轮叶片的转动方向一致,在相同流量条件下,增加了流体对涡轮叶片的驱动力,实现降低启动排量和提高分辨率的目的,整体结构如图3所示。电磁流量计是一种用来测量导电介质体积流量的仪表。为了确保电磁流量计测量的准确性以及工作的稳定性,需要定期对其做一次全面检查,接下来开流仪表来给大家说说检查的具体内容。1.零点检查  整机零点检查的技术要求是:流量传感器测量管充满液体且无流动,通常转换器单独零点为负值,数值也很小;如果其绝对值大于满量程的5%就需要先做检查,待确认原因后再作调整。2.连接电缆检查 该项检查内容是检查信号线与励磁线各芯导通和绝缘电阻,检查各屏蔽层接地是否完好。3.转换器检查  该项检查内容是用通用仪表以及流量计型号相匹配的模拟信号器代替传感器提供流量信号进行调零和校准。校准包括零点检查和调整,设定值检查,励磁电流测量,电流/频率输出检查等。4.电磁流量计传感器检查  测量励磁线圈的电阻,测量电极接液电阻以评估电极表面受污秽和衬里附着层状况;检查各部位绝缘电阻以判断零件劣化程度,以估算清洗附着层前后因流动面积变化引入的流量值变化。德国VSEAP1流量计总代理1.测量液体  孔板流量计测量液体流量时工艺管道水平安装,差压变送器的位置处于节流装置下方时,取压口应在节流装置的水平中心轴线下偏 45°角引出,这可以消样除由流体传放出的气体进入导压管和差压变送器(如图8).若差压变送器处于节流装置的上方时,除取压口下偏≤45°角 然后向上引导压管外,应在导压管的最高点装置集器或排气阀.(如图9)2.测量水蒸汽  测量蒸汽流量时,安装方式一般为差压变送器低于,高于节流装置两种.(如图 12)取压口位置应附合上述安装要求,并在导压管制高点处装上放气阀和气体收集器。3.测量气体  测量介质为清洁的气体流量时,安装方式一般为差压变送器高于,低于节流装置两种c如图11.12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送器,并在最低处装置放水阀和沉积器。4.测量腐蚀性液体和气体  测量腐蚀性的液体和气体流量时,取压口应附合上述安装要求,不论管道是水平安装或垂直安装,差压变送器高于或低节流装置③.测量气体测量介质为清洁的气体流量时,安装方式一般为差压变送器高于、低于节流装置两种(如图11.12)取压口位置应符合上述安装要求,当差压变送器低于节流装置时,导压管必须向下弯至差压变送器,并在最低处装置放水阀和沉积器。1.空间电磁波干扰及改进  电磁流量计用于测量实践的过程中,转换器与传感器间如果存在较长的电缆,同时周边有较强电磁干扰的情况存在,此时由于电缆的存在,干扰信号会被引入进去,最终会有共模干扰现象形成,导致流量计发生非线性、显著失真或大幅度晃动等诸多情况,测量的准确性也会因此大打折扣.面对此类误差引发的原因来看,可根据下述措施进行解决:(1)在电磁流量计安装中,需要深入分析周边环境,保证电磁流量计原理强磁场.(2)尽量将电缆长度控制在适宜范围内,并落实相关屏蔽措施,如将电缆传入接地钢管中,避免电源线与电缆传入同一根管.(3)选择与要求相符合的屏蔽电缆,同样能将电磁波构成的干扰有效降低.2.连接电缆问题及改进  电磁流量计是通过特定电缆、转换器和传感器组成的系统,因此电缆长度、屏蔽层数、导体横截面积、绝缘情况及分布电容等都会对其测量结果构成影响,甚至还会对电磁流量计的正常运行产生干扰.所以,在安装电磁流量计时不但需要参照导体横截面积、屏蔽层数、待测液体电导率及分布电容等确定电缆长度,同时也要将电缆中间接头的情况规避,并妥善处理末端,保障能够实现良好连接.此外,也要保障所用电缆符合标准要求.3.测量管内存在着层及改进  以电磁流量计应用对象为根据,其多以测量非清洁流体为主,倘若实际测量中有一定量沉淀物等物质存在于非清洁流体内部,电磁流量计的正常使用及测量也必然会遭受影响,如污染电磁流量计管道、电极表面,最终引发测量误差.面对此类误差引发原因,相关人员在日常工作中应当做好电磁流量计定期清洗工作,同时适当将流速提升.此外,在衬里材料的选择中,可选择聚四氯乙烯.4.电极选择、液体流速问题及改进  电磁流量计实际应用中,其电极和内部材料会直接接触待测液体,所以在选择电极和衬里材料时,都应当以待测液体为根据合理进行.结合待测液体性质完成衬里材料特性的确定,并在实际测量中围绕测量温度展开严格控制,避免由于衬里材料选择不合理或温度控制力度不足而导致衬里材料受磨损或变形等情况,进而导致附着速度加快、增大测量误差发生率.针对此类情况,在应用电磁流量计时,在突出衬里材料选择针对性的同时,也需要合理选择电极,并妥善控制液体流速,保障处于合理范围.5.测量液体呈现不对称状态及改进  应用电磁流量计测量相关液体的流量时,待测液体如果有不对称状态出现,必然会引起测量误差的情况.液体非对称状态通常在单一的漩涡流或沿管线轴线的直线流等两种流动组合方面得到表现.该情况下,管道截面的积分为液体体积流量.上游直管段如果存在不足,一般情况下可结合流量调节器调节流量,控制上下游一定范围内流量计内径与管道内径之间具备相同的数值,确保上游直管段充足.6.电极与励磁线圈对称性问题及改进  在加工制造电磁流量计磁力线圈及电极时,有着严格对称的要求.倘若有不对称的情况出现,必然会引起不对称偏差,进而对测量结果构成影响,最终也就会有测量误差的情况出现.同时,在安装电磁流量计时,也严格要求了安装地点的振动,如一体型电磁流量计的安装,需要在振动小的场所内,如果振动超出了标准就会有误差出现在测量中,甚至还会对仪表的正常工作构成影响.所以,相关人员在实际安装前,需要对待安装位置振动展开严密测量,保障与安装标准相符合.1.对孔板流量计进行正确选型  选择孔板流量计,首先要考虑量程问题。有些是冬季用汽量相对大,而夏季用汽量相对较小,用汽量相差过于悬殊,那么孔板流量计在保证测量准确度的前提下,孔板流量计的流量范围就难以适应。因此,要明确最小流量(不是零)及最大流量,在此基础上选择符合相关运行参数的计量仪表。2.对孔板进行正确安装对于任何计量仪表都必须安装正确,否则就无法正常工作。正确安装孔板流量计,必须做到五点。①在所要安装计量仪表的前后必须留有足够长的直管段。②孔板流量计不能安装在整套管路最低处。③必须高度重视冷凝器的安装:两个冷凝器必须处于同一水平上,冷凝器的作用是使导压管中被测蒸汽冷凝;并使正、负导压管中的冷凝液面有相等高度;还必须保持长期稳定;还要充分考虑维护、拆换、吹扫便利。④导压管长度最好在16m以内,内径最好选用中10mm~016mm有防堵塞为好。导压管全程保温并确保正、负管处于同等温度以免密度变化引起误差。⑤装测温元件地方最好在节流件下游侧10D以外处,在管道或正压管上取压时,如压力变送器装在节流装置下方,必须对压力变送器的管路液柱值进行修正,以提高计量准确度。

您如果需要德国VSEAP1流量计总代理的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网