欢迎光临汉徳森工业品销售中心

您现在的位置: 主页 > 工业品资讯 > 缓冲器 >

德国VSEVTR1025流量计工厂

发布时间: 热度:
德国VSEVTR1025流量计工厂同时我们还经营:1、旋进旋涡流量计无机械可动部件,耐腐蚀,稳定可靠,寿命长,长期运行无须特殊维护;2、采用16位电脑芯片,集成度高,体积小,性能好,...

德国VSEVTR1025流量计工厂同时我们还经营:1、旋进旋涡流量计无机械可动部件,耐腐蚀,稳定可靠,寿命长,长期运行无须特殊维护;2、采用16位电脑芯片,集成度高,体积小,性能好,整机功能强;3、智能型流量计集流量探头、微处理器、压力、温度传感器于一体,采取内置式组合,使结构更加紧凑,可直接测量流体的流量、压力和温度,并自动实时跟踪补偿和压缩因子修正;4、采用双检测技术可效地提高检测信号强度,并抑制由管线振动引起的干扰;5、采用汉字点阵显示屏,显示位数多,读数直观方便,可直接显示工作状态下的体积流量、标准状态下的体积流量、总量,以及介质压力、温度等参数;6、采用EEPROM技术,参数设置方便,可*保存,并可保存长达一年的历史数据;7、转换器可输出频率脉冲、4-20mA模拟信号,并具有RS485接口和HART协议,可直接与微机联网,传输距离可达1.2Km;8、配合本公司的FM型数据采集器,可通过因特网或者网络进行远程数据传输;9、压力、温度信号为变送器输入方式,互换性强;10、旋进旋涡流量计整机功耗低,可用内电池供电,也可外接电源。1、确认涡轮流量计可用的测量对象,如前所述。2、选择型式。按流体物性选择,气体和液体分别用气体型和液体型,不能通用。在工作状态下液体粘度超过5mPa.s应选用高粘度型(国内尚无定型产品)。酸性腐蚀性液体选用耐酸型(国内尚无定型产品)。  按环境条件选择,按环境温度和湿度等选择合适仪表,如周围有爆炸易燃性气氛应选防爆型传感器。  按管道连接方式选择,传感器有水平和垂直两种安装方式。水平安装时与管道连接方式有法兰连接、螺纹连接和夹装连接。中等口径选用法兰连接,小口径和高压管道选用螺纹连接,夹装连接只适用于低压中小管径。垂直安装只有螺纹连接。3、选择规格。按现场使用条件,如流量范围、管径、流体压力和温度、安装位置等和性能要求,如精确度、重复性、显示方式等参照制造厂选型样本或使用说明书选定具体规格型号,也有可能找不到合适的,只好另选其它流量计。  由于涡轮流量计类型规格繁多,特别是不同制造厂产品质量有差别,必须尽量搜集制造厂及有关标准等资料进行反复调查比较后再决定取舍。1.仪表正确通电  电磁流量计无电源开关接入电源即进入工作状态.仪表在通电后首先进行自检显示器同时显示生产商的电话号码.自检通过后进入测量状态测量指示灯闪烁.2.显示切换  仪表工作在测量状态时按AT键可以切换流量的瞬时值显示和累积量显示或同时显示瞬时量和累积量.同时瞬时量指示灯和累积量指示灯相应点亮显示累积量时仪表上排数字显示高6位累积流量,下排数字显示低8位累积流量瞬时量和累积量同时显示时下排只显示累积流量的低8位.3.背光启闭  仪表在测量状态时按压INC键可以开启或关闭显示的背光.4.前24小时累积量显示  在测量状态下按压SET键约10秒至上排出现LOC字符输入0001~0024后按SET键可查阅当前累积流量或前23小时每小时的累积流量再按SET键返回测量状态.5.累积流量清零  仪表在测量状态时按 SET 键至显示LOC后输入9090按SET键返回测量状态再按INC键可以将累积流量清零.6.参数设置  在电磁流量计处于测量显示状态按SET建10秒显示器上排出现"LOC"字符下排出现"0000"数字.点按AT键1次个位数可修改每点按AT键一次可修改位从右向左移一位同时上排显示器最右端出现可修改的位数从右向左数密码数值输入完毕再按SET键两次进入相应参数组内的第一个参数.每按SET键两次既在确认本次参数值的同时又进入下一个参数依此类推到最后一个参数后转回测量状态界面.各组参数见"功能参数速查表".热式气体质量流量计是利用传热原理,即流动中的流体与热源(流体中加热的物质或测量管外加热体)之间热量交换关系来测量流量的仪表,目前主要用于测量气体。热式流量仪表用得最多有两类,一是利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计,曾称量热式TMF;另外--类是利用热消散(冷却)效应的金氏定律TMF又由于结构上检测元件伸入测量管内,也称插入型或侵入型。插入型的工作原理及流量计算如下:   如图所示,插入式热式气体质量流量计由两个电阻温度计组成传感器,一个测温探头,感受流体温度T2另一个电阻温度计由电路加热到温度T1用来测量流体带走的热量变化,亦称测速探头。T1高于T2。并保持△T恒定,即△T=T1-T2。当流体流经传感器时,由于测速探头的自身温度T1高于测温探头感受的温度即流体温度T2,流体便带走了测速探头上的一部分热量(高温向低温传递),使T1下降。电路为保持△T恒定,便增加对测速探头的加热功率,使△T=T1-T2恒定。流体带走测速探头.上多少热量,电路便增加相应数量的电功率,两者之间存在着一个函数关系"。设对测速探头的加热功率为P1,流体的质量流量为Q,则根据流体流过测速探头时所带走的热量与对测速探头的加热功率相对应的原理,得到下列关系式: 式(1)中,PocQ   因此,可以通过测量加热功率P,来测量带走这部分热量的流体的质量流量。由于带走着部分热量的是流体的分子,所以,测速探头直接测量的是流体的质量流速pv,此时,只要乘上管道的横截面积,就可以得到流体的质量流量了。由于气体流过探头时带走热量和气体的质量流量成比例关系,也和探头间温差有关,流量越大,两探头之间温差越小,气体质量流量与温差之间的联系通过质量流速ρv建立"。 式中:Qm-质量流量,kg/s; Kv-测量头仪表系数; a-速度分布系数; B一阻塞系数; x-干扰系数; A-仪表表体(测量管道)的内橫截面积,m² ρv一质量流速,kg/(m²·S)。   基于_上述原理,对于大管径的流量测量来说,虽无相应的大管径标定装置来对流量计进行标定,但只要在标准口径的标定装置.上测定相应的质量流速,也就可方便地测量出大管径中流体的质量流量了。   由热式气体质量流量计中于两个传感器都是用性能稳定的金属铂材料通过特殊工艺密封在316L不锈钢管或抗酸、碱腐蚀的K2760哈氏合金或铂套管中制成,因此极为坚固,并不会污染被测流体或受被测流体污染,且其抗腐蚀性能相当好。1.差压管路堵塞,疏通差压管路;2.差压计故障,检查差压计;3.差压变送器示值明显偏离,应检查尺示值;4.节流元件安装方向有误,重新安装节流元件;5.被测介质工况参数与设计节流装置时采用的参数不一致,按相关公式修正,必要时应重新计算差压值;6.孔板流量计前后直管段长度不够,应调整直管段长度;7.直管段内径超差,实测直管段内径,重新计算最大流量;8.节流孔径超差,实测节流孔径,重新计算最大流量;9.节流元件变形,更换节流元件;10.节流元件上有附着物,清洗更换节流元件;11.孔板的尖锐一侧应该迎向流体流向为入口端,呈喇叭形的一侧为出口端。如果装反了,显示将会偏小很多 。  解决办法:检查孔板安装方向,正确安装孔板。12.孔板的入口边缘磨损,如果孔板使用时间较长,特别是在被测介质夹杂固体颗粒等杂物情况下,都会造成孔板的几何形状和尺寸的变化,如果造成开孔变大或开孔边缘变钝,测量压差就会变小,流量显示就会偏低。  解决办法:对孔板进行重新加工。13.变送器零点漂移:如果使用时间较长,变送器的零点可能会发生漂移,如果是负漂移,显示压差将会减小,显示的流量也会减小。  解决办法:对变送器的零点进行校正。14.上下游直管段长度不够,上下游直管段如果不够长,气体将得不到充分发展,会使计量结果造成较大误差,如果上游在规定直管段内存在多个弯头,将使计量结果偏低。  解决办法:改造蒸汽管道,是上下游直管段长度达到规定要求。在节流装置前加整流器。15.差压变送器的三阀组漏气,如果三阀组中的高压阀货平衡阀漏气,将会导致测量差压值减小,测量结果就会偏低。  解决办法:如果三阀组中的高压阀门漏气,将该阀门进行紧固,必要时进行更换,如果三阀组中的平衡阀内漏,将该阀门进行紧固,必要时进行更换。由金属管浮子流量计的工作原理我们知道:流体的流量与浮子在锥管中的高度有关,因此要实现对流量的测量,实际上取决于对浮子位置的测量。  本设计中采用美国公司生产的非接触式角位移磁阻传感器HMC1501代替传统的接触式角度传感器,HMC1501可以测量从磁铁发出的磁场的方向角。  设计中将一条形磁铁置于磁阻传感器上方,令磁阻传感器与锥管间距离为L,传感器距锥管底部高度为H,如图2.3所示。  当浮子位于高度H处时,小磁铁的转角为0。当流量变化时,浮子上下移动,其内嵌磁钢也随之上下移动,此时,置于磁阻传感器正上方的条形磁铁受到磁场作用发生转动,如图2.4,转动的角度即与浮子位置有关。  由上图可见当磁铁转过角度为θ时,金属管浮子流量计浮子在锥管中的位置h=H+Ltgθ,则根据式1.9可得:德国VSEVTR1025流量计工厂  考虑到容积式流量测量装置结构较复杂,安装维护和校准不方便,有必要在满足精度和抗震.性能要求的前提下,采用安装和维护方便的其他形式流量测量仪表。热式气体质量流量计已在气体流量测量领域获得了成功的应用,具有无可动部件、压损小及量程比宽等特点,例如在核电厂的通风系统中,已成功地替代皮托管成为重要的测量方式。但在液位流量测量领域,热式质量流量计的应用仍具有局限性。   由式(2)可知,热丝的热散失率与流体的热导率、比热容、流速和密度有关。相对于通风系统中的空气来说,水是-种具有较大比热容、较大密度和热导率的介质。在相同的流速下,水带走的热量远大于空气,对于以恒定功率加热热端铂电阻的恒功率型热式质量流量计,为了适应水流量的测量,加热电路会采用比较高的加热功率为热端铂电阻进行加热;对于恒温差型的热式质量流量计,为了维持两个铂电阻之间恒定的温差,加热电路同样会处于比较高的加热功率状态下,且加热功率将随水流量的增大而增大。因而,无论是恒功率型还是恒温差型,加热功率的提高会对流量计的安全性和寿命有很大的影响,也使其应用环境造成一定的局限性。而恒比率式流量计由于通过调节施加在热端热电阻上的加热电流,使热端热电阻的阻值与冷端热电阻的阻值成一恒定比率,因而同恒温差式流量计相比,在测量相同流速流体的情况下,恒比率式流量计热端铂电阻的加热电流要小于恒温差式,因而其加热功率不会过高而产生仪表安全性和使用寿命方面的不利影响。对于主泵第三级密封泄漏流这种微小流量的测量,相对于恒功率式和恒温差式,恒比率式热式质量流量计具有更好的应用价值,然而对于较大液体流量的测量则并不适用。恒比率式流量计的热端铂电阻加热电流Ih与介质质量流量m的关系为: 式中Ap-一流体流经管道的截面积; As一传感器参与热交换部分的表面积; C1、C2一通过校准确定的常数; d一热电阻传感器直径; k一流体热导率; Ls一传感器损耗能量的因数; n一校准过程中通过回归确定的指数; Pr一流体的普朗特数; Rc一冷端铂电阻阻值; Rco一冷端铂电阻在0℃时的阻值; RH一热端铂电阻阻值; RH0一热端铂电阻在0C时的阻值;, r一恒比率参数(自加热系数),r= a一铂电阻的参数。 1.基本性能   热式质量流量计作为一种直接测量质量流量的智能型流量仪表,具有结构简单、体积小、数字化程度高及安装方便等优点。热式质量流量计的.测量精度一般约为±1%,重复性为±0.2%;量程比宽可达100:1,最高可达1000:1;在-40~60℃的环境温度下可正常工作;可耐受3MPa或更高的管道压力;允许介质工作温度-70~400℃;允许被测液体的流速为0~4m/s;支持HART协议。另外,具有压损小、直管段要求低和允许动态修正的特点,其响应时间较长,未采用特殊设计时可达几秒。热式质量流量计具有一体式和分体式两种.结构,在累积辐照剂量较大区域,可采用分体式流量计进行测量,信号处理部分布置于累积辐照剂量较小区域。   主泵第三级密封泄漏流正常工况下在5L/h左右,达到50L/h时报警,不用于过程控制。在电厂正常运行工况下,测点所在区域的环境温度约为50℃以下,工作压力小于0.6MPa,工作温度小于100℃,要求测量范围的量程比约为30:1,属于非1E级测点。因此,就测量要求而言,热式质量流量计适用于主泵第三级密封泄漏流量的测量。 2.抗震性能   由于主泵第三级密封泄漏流测点位于安全壳内,周围存在1E级仪表和核级管道,尽管测点本身不需要在设计基准事件工况下执行功能,但不应对其他需要执行功能的设备或仪表造成损害,因而用于该测点的仪表应满足抗震要求,在SSE地震载荷下,满足结构完整性的要求,避免放射性物质经仪表破口向环境释放以及对周围1E级仪表和核级设备产生潜在危害。   热式质量流量计结构简单,除进行抗震试验外,抗震分析亦可用于分析其抗震性能。在抗震分析中,需要重点对薄弱部位进行应力分析,通常包括传感器与管道相交的节点处、螺纹连接处及法兰连接处等位置。   对某一型号热式气体质量流量计进行抗震分析,取三向峰值加速度为6g。通过应力分析表明,流量计的第一-阶自振频率大于33Hz,在地震载荷作用下,薄弱部位的计算应力值均小于规定的应力限值,从而认为其在SSE地震载荷下,结构完整性可以得到保证。 3.耐辐照性能   因主泵第三级密封泄漏流测点位于安全壳内,在电厂正常运行工况下,探头所处的环境具有一定的电离辐射存在。因而,用于该测点的仪表应能经受--定的累积辐照剂量而测量结果仍在要求的测量精度范围内。目前,对于仪表的耐辐照性能,主要采用试验法进行验证。   对某一型号分体式热式质量流量计探头进行耐辐照试验,辐射源采用钴-60,试验时间持续40h以上,累积辐照剂量约2x104Gy,辐照后进行功能试验,流量计的输出维持在测量精度范围内,表明该型流量计可以经受若干年的累积辐照剂量而不损坏。 4.安装   为便于安装和维护,流量计可采用法兰-法兰连接的形式。在一般情况下,为了满足测量精度,热式质量流量计对于前后直管段的要求较高,部分型号的流量计要求的直管段长度可达到前15D、后5D以上。但由于流量计允许动态修正,经过标定和修正后,可降低热式质量流量计的前后直管段要求。对于主泵第三级密封泄漏流的测量,热式质量流量计可满足安装和维护要求。1.涡轮流量计的始动流量值qvmin很大程度上取决于轴和叶轮前后轴承间的机械摩擦阻力矩7b,而它是由轴承与轴的微小间隙内流体与固体壁面的粘性摩擦引起的,且内部流体可认为始终处于层流状态。Tb越小,qvmin也越小,因此为了使涡轮流量传感器在小流量测量范围内能够体现良好测量性能,最重要的是要减少轴和轴承之间的机械摩擦。2.流体介质密度ρ与qvmin值成反比,ρ越大,则qvmin越小。液体密度受温度影响不大,相比之下温度的变化会较大程度改变气体密度,所以测量气体时要留意温度因素,以防引起传感器特性曲线的变化。3.同样条件下,叶片安装角β越大,则qvmin越小。  当被测流体流量大于qvmin后,流量继续增加会使叶轮旋转角速度加快,此时流体因素阻力矩与机械摩擦阻力矩相比占据主要地位,故可认为Tb=0。由于流体流动状态不尽相同,而涡轮流量计传感器实际的特性曲线受流体流动状态影响.德国VSEVTR1025流量计工厂电磁流量计是一种测量导电介质体积流量的感应仪表,在进行现场监测显示的同时,可输出标准的电流信号,供记录、调节、控制使用,实现检测自动控制,并可实现信号的远距离传送。    智能电磁流量计具有精度高、灵敏度高、稳定性好等优点,在供水企业中有着广泛的应用前景,特别是在大口径、安装环境好的工厂、居民区等场所,虽然智能电磁流量计的使用已经非常成熟。但是,仍有一些问题需要注意。一、信号传输问题:    电磁流量计在区域管网中运行时,可以为城市供水调度提供一定的决策信息。因此,用户对电磁流量信号的实时性和连续性提出了更高的要求。如果智能电磁流量计能完成仪器本身信号的自动转换和无线传输,减少数据采集的兼容或相互转换等困扰,那将为企业的使用提供便利,也将为仪表的推广应用增加更大的优势。二、电源问题:    目前智能电磁流量计不自带电源,造成了室外安装不方便,一旦断电,将造成用作结算水表的流量计数据缺失,这样对其断电时段缺失水量的计量与推算也就提出了新的问题。若电磁流量计能自带电源,就能从根本上解决这一问题,也将促进其在结算水表中的推广应用。三、防雷问题:    电磁流量计在雷雨天气覆盖较广的地区防雷是个重要的工作。在严格做好接地、电源保护后,在空旷地区安装的电磁流量计被雷击的概率还是很高。所以简单有效的办法是提高流量计自身的防雷性能,如不能根本性解决,则应对其内部电路进行分离保护,这样即使雷击损坏,也能降低更换成本。

您如果需要德国VSEVTR1025流量计工厂的产品,请点击右侧的联系方式联系我们,期待您的来电

责任编辑:汉德森工业网